Multi-objective global optimization for hydrologic models
نویسندگان
چکیده
The development of automated (computer-based) calibration methods has focused mainly on the selection of a singleobjective measure of the distance between the model-simulated output and the data and the selection of an automatic optimization algorithm to search for the parameter values which minimize that distance. However, practical experience with model calibration suggests that no single-objective function is adequate to measure the ways in which the model fails to match the important characteristics of the observed data. Given that some of the latest hydrologic models simulate several of the watershed output fluxes (e.g. water, energy, chemical constituents, etc.), there is a need for effective and efficient multiobjective calibration procedures capable of exploiting all of the useful information about the physical system contained in the measurement data time series. The MOCOM-UA algorithm, an effective and efficient methodology for solving the multipleobjective global optimization problem, is presented in this paper. The method is an extension of the successful SCE-UA single-objective global optimization algorithm. The features and capabilities of MOCOM-UA are illustrated by means of a simple hydrologic model calibration study. © 1998 Elsevier Science B.V.
منابع مشابه
Automatic Calibration of HEC-HMS Model Using Multi-Objective Fuzzy Optimal Models
Estimation of parameters of a hydrologic model is undertaken using a procedure called “calibration” in order to obtain predictions as close as possible to observed values. This study aimed to use the particle swarm optimization (PSO) algorithm for automatic calibration of the HEC-HMS hydrologic model, which includes a library of different event-based models for simulating the rainfall-runoff pr...
متن کاملEffective and efficient algorithm for multiobjective optimization of hydrologic models
[1] Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementar...
متن کاملA Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملOn the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model
With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time ...
متن کاملAutomatic Calibration of Hydrologic Models with Multi-objective Evolutionary Algorithm and Pareto Optimization
In optimization problems with at least two conflicting objectives, a set of solutions rather than a unique one exists because of the trade-offs between these objectives. A Pareto optimal solution set is achieved when a solution cannot be improved upon without degrading at least one of its objective criteria. This study investigated the application of multi-objective evolutionary algorithm (MOEA...
متن کامل